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Abstract

Ultraviolet (UV) irradiation is a common disinfection option for water treatment in
the developed world. There are a few systems installed in developing countries for
point-of-use treatment, but the low-pressure mercury lamps currently used as the UV
irradiation source, have a number of sustainability issues including a short lifetime of
approximately one year and toxic mercury inside that must be disposed of after they
are used. UV light emitting diodes (LEDs) may present solutions to many of the
sustainability issues presented by current UV systems. LEDs are small, efficient, have
long lifetimes, and do not contain mercury. LEDs have recently become available in
the germicidal wavelength range and this research assessed their efficiency for
inactivation of E. coli in water compared to low-pressure lamps. A UV-LED
prototype was also evaluated as a proof-of-concept of this technology for a point-of-

use disinfection option.
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1. Research Objectives

The objective of this project is to evaluate the efficacy of Ultraviolet Light
Emitting Diode (UV-LED) technology for the development of point-of-use (POU)
water disinfection systems to improve public health in rural communities in a
sustainable, environmentally responsible manner. There are a number of POU
technologies available, but the application of UV-LEDs as a disinfection source will
provide an additional technology to the POU toolbox that will enable longer-life
disinfection systems with low user input and very low energy cost compared to
current low-pressure mercury lamps. This will improve public health by increasing
system reliability and decreasing maintenance needs.

Specifically, this research seeks to evaluate the use of UV-LEDs at 265 nm for
inactivation of E. coli in water through meeting the following objectives:

- Determine if UV-LEDs at 265 nm are more efficient than low-pressure

lamps (254 nm) for inactivation of E. coli (based on the action spectra of
E. coli (Figure 0))
- Build and evaluate a point-of-use UV-LED prototype

- Determine if UV-LEDs are a feasible option for water treatment
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2. Introduction

2.1 The Need for Point-of-Use Treatment Options

Diarrheal illnesses are one of the leading causes of morbidity and mortality in
developing countries (Pruss et al., 2002, WHO, 2002). In many analyses of
interventions to reduce diarrhea, “improved water quality” is shown to have a lower
effect than other interventions such as sanitation and hygiene. However, these
reviews focus upon source water quality improvements rather than improvements at
point-of-use (Gundry et al, 2004). Fewtrell and Colford (2004), showed the increased
impact of treating water at the household level compared to treating at the source.
This information has created an interest in household water treatment technologies. A
number of point-of-use technologies have been evaluated including boiling, biosand
filtration, chlorination, chlorination plus flocculation, solar disinfection (SODIS), and
ceramic filters (Sobsey et al., 2008). Disinfection using ultraviolet (UV) radiation in
the UV-C range may be a more favorable option for many applications. It does not
utilize chemicals and disinfects at much higher rates than SODIS which utilizes
radiation in the UV-A range.

UV disinfection is a well-established disinfection technology that has been
used in centralized water and wastewater facilities in developed countries for decades.
UV radiation inactivates bacteria, viruses, and protozoa, with the benefits of no taste
and odor issues, no known disinfection byproducts (DBPs), no danger of overdosing,
relatively fast treatment rates compared to sand and ceramic filters, and low-
maintenance. Over the last ten years, small UV systems have become available,

including commercially available systems such as Sterilight and the low-cost, locally
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manufactured UV-Tube system that have become an appropriate treatment option
for developing communities in a number of countries including Mexico, Rwanda,

Sri Lanka, and India (Reygadas et al., 2006).

2.2 Benefits of UV-LEDs

UV disinfection can be an improvement over other treatment options, such as
chemical disinfection, for many applications, but there are sustainability issues that
arise from current low-pressure lamp systems. They use toxic mercury as the UV
radiation source and typically only last for around one year (8,000-10,000 hours) at
which time communities are faced with a number of issues: finding and paying for
replacement lamps, transporting these fragile glass and filament tubes, and disposing
of mercury contained in the used lamp in areas that do not always have a toxic waste
disposal system (US EPA, 2006).

UV light emitting diodes (LEDs) may provide solutions to many of the
sustainability issues of UV mercury lamps. They are small (5-9 mm diameter), and do
not contain glass, filament or mercury, aiding their transport and disposal (Bettles et
al., 2007). Warm-up time is not required for LEDs, saving energy and allowing for
intermittent use and quick recovery from a power failure—important characteristics
for rural applications especially. LEDs are replacing a number of light sources
currently utilized today including traffic lights and household lights. LEDs have an
excellent track record for lowering system costs through energy savings, lower
maintenance, and longer replacement intervals. The average electrical-to-germicidal

efficiency of low-pressure UV mercury tube lamps is 35-38% (US EPA, 2006).
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Visible LEDs can operate at 75% efficiency for ten years (100,000 hours) (Bettles et
al., 2007). Currently, the efficiencies of UV-LEDs are less than 1% with lifetimes of
around 1,000 hours (Bettles et al., 2007; Gaska, 2007). Although research of this
technology is still in its infancy, improvements to UV-LEDs are expected to occur
rapidly following visible LED source trajectories, resulting in a high efficiency, low
power input.

Another benefit of UV-LED:s is their wide range of operating temperatures,
which may allow them to be utilized in locations with extreme temperatures,
particularly cold temperatures since the power output increases at lower temperatures.
At 5°C, the UV-LEDs from SET, produce about 35% more power compared to room
temperature (SET UV-TOP Technical Data, 2008). Low-pressure mercury lamps run
at optimal level at room temperature and the efficiency will rapidly decrease at
temperatures on either side of this (Crawford et al., 2005).

Temperature has been thought to have a large effect on thymine dimer
formation, with an increased rate of thymine dimer formation at temperatures less
than 25°C due to the stacked configuration of DNA at lower temperatures that is
more subject to dimerization (Rahn, 1970). In regions of cold temperatures, this
increase in disinfection efficiency could be taken advantage of with UV-LEDs.
However, recent studies have shown there is little to no change in dimer formation at
temperatures of 5, 20, and 35°C (Severin et al., 1983).

The availability of specific output wavelengths using UV-LEDs may also
increase their inactivation efficacy. UV-LEDs currently operate in the wavelength

range of 247-365 nm (Gaska, 2007). Effective UV sources should emit high
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intensities in the peak absorbance wavelengths of DNA—the germicidal target of
UV photons. However, germicidal effectiveness as a function of wavelength can
vary for different microorganisms and may differ from the DNA absorbance

spectrum, as illustrated in Error! Reference source not found..

4 ]
: ------MS2 - Linden et al. 2001

3.5 ". —-6— Cryptosporidium - Linden et al. 2001
§ | —a— Adenovirus - Malley et al. 2004
© 3 4 — & . Herpes Simplex - Linden et al. 2001
€ e : —— DNA - Rauth 1965
o = :
e 2.5 1 [
=3
<<
= 2 24 -
=2 :
(S
= © 1.5
S 2
5o
< 11
3

0.5 1

0 T
200 210 220 230 240 250 260 270 280 290 200
Wavelength (nm)
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Figure 2. UV germicidal effectiveness for various microorganisms (US EPA, 2006)

Supplementing peak DNA wavelengths with other UV emissions may provide
a synergistic disinfection effect, increasing the effectiveness of UV inactivation of
pathogens (US EPA, 2006; Mamane-Gravetz et al., 2005). Low-pressure lamps are
monochromatic (254 nm) and some pathogens, such as adenovirus, are not most
effectively inactivated at this wavelength. Mamane-Gravetz et al., 2005, found that
MS2 bacteriophage was three times more sensitive to wavelengths around 214 nm
compared to 254 nm and B. subtilis spores were more effectively inactivated around

265 nm. Medium Pressure lamps are polychromatic, but peak intensities occur at set
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wavelengths based on the emission properties of mercury. A distinct advantage over
conventional UV sources is that UV-LED systems can incorporate an LED array of
differing wavelengths, maximizing their combined germicidal effect. This would
allow units to be custom designed based on the specific microbial contaminants of

source waters, or for a broad range of pathogens under a single system.

2.3 Greater Good/Ramifications

Many rural systems in the United States and in less developed communities rely
on minimally experienced operators. This technology could decrease operator
involvement while increasing system reliability and providing long-term operation.
Other benefits include less mercury released to the environment, a safer, lower
maintenance option than chlorination and sand filtration, and less waste due to the
longer lifetime of LEDs.

In San Andres, Guatemala, there is running, low-turbidity, water in the local
homes. However, families need to purchase five gallon plastic bottles of potable
water for drinking needs. A small, point-of-use, UV-LED disinfection unit could
reduce household drinking water expenses and improve community public health
while reducing the need for these plastic bottles.

In 2007, Engineers Without Borders at the University of Colorado designed
and implemented six rainwater catchment systems at an orphanage in Mugonero,
Rwanda. These systems will provide water for cooking, cleaning, and bathing, but
will not be drinking water quality. The water will still need to be boiled for drinking
water needs since the residence do not like the taste of chlorine, a very costly process

in a country where wood is extremely scarce. A small, photovoltaic powered UV-
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LED system attached to the orphanage-based rainwater storage tanks could alleviate
both time consuming trips to the community tap forty minutes away and reduce

orphanage costs for fuel wood, as well as promote clean water consumption and

public health.
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3. Background

3.1 Fundamentals of Photochemistry

3.1.1 Characteristics of Ultraviolet Light

Ultraviolet Light is characterized by light in the wavelengths of 100-400 nm,
including vacuum UV (100 to 200 nm), UVC (200 to 280 nm), UVB (280 to 315
nm), and UVA (315 to 400 nm) (ISO 21348, 2007). Vacuum UV is a very effective
disinfectant, but is quickly absorbed by most substances and impractical for water
treatment. UVC is a higher energy than UVA and UVB and is the main source of
germicidal action in current UV disinfection systems.

The energy emitted by light can be calculated using Planck’s Law of
Radiation:

u=hv=hcl/u

where u is the energy of one photon (J), vis the frequency (s™), A is the
wavelength (m), ¢ is the speed of light in a vacuum (3.0 x 10° m/s), and 4 is the

Planck constant (6.626 x 10°* J s).

3.1.2 Terms and Concepts (Bolton, 2000; Verhoeven, 1996)

Source Radiant Power (®): The total radiant power emitted in all directions
by a radiant energy source (units, W).
Source Radiant Energy (Q): The total radiant energy emitted from a source

over a given period of time (units, J).
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Irradiance (E): The total radiant power from all upward directions incident
on an infinitesimal surface element with area dS containing the point under
consideration divided by dS (units, mW/cm?).

Fluence Rate (E’): The total radiant power incident from all directions onto an
infinitesimally small sphere with cross-sectional area dA, divided by dA (units,
mW/cm?).

UV Dose or Fluence (H’): The total radiant energy from all directions passing
through an infinitesimally small sphere of cross-sectional area dA, divided by dA
(units, mJ/cm?). Equals the Fluence Rate (mW/cm?) multiplied by the irradiation time

in seconds.

3.1.3 Absorbance and Transmittance: The Beer-Lambert Law

UV light will be attenuated by any substance that is capable of absorbing it.
The ability of a substance to absorb light is calculated using the Beer-Lambert Law
and quantified as absorbance or transmittance.

Absorbance (A) is a unitless value used to quantify the decrease in incident
light as it passes through a water sample over a specified distance (path length); i.e.

how much light was absorbed. It can be calculated using the Beer-Lambert Law by:

1
A=log |,
Og(l)

where A4 is the absorbance at a specified wavelength and path length, /, is the intensity
of light incident on the sample (mW/cm?), and  is the intensity of light transmitted

through the sample (mW/cm?).
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UV Transmittance (UVT) refers to the percentage of light passing through a
medium over a specified distance, calculated by the Beer-Lambert Law by:

UVT (%) =100 x Ii’

where UVT is the UV transmittance at a specific wavelength and path length, / is the
intensity of light transmitted through the sample (mW/cm?), and 1, is the intensity of
light incident on the sample (mW/cm?).

Transmittance and Absorbance are related by:

UVT (%) =100 x 10~

or

UVT (%
A=- log(%)

If the attenuation of light is mainly due to absorption, transmittance can also

be calculated by:

UVT (%) =107,
where « is the absorption coefficient at a specified wavelength (cm™), and / is the
path length (cm).

The absorption coefficient () is related to the absorbance (A) at a specified

wavelength by:

o~ (?) In(10)
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4. Literature Review

Limited research has been conducted on the effectiveness of UV-LEDs for
water disinfection. Most of the data available are for LEDs that output light in the
UVA range (320-400 nm), which is less efficient at disinfection than light in the
germicidal range of UVC (200-280 nm) since it is poorly absorbed by DNA (Sinha
and Héder, 2002; ISO 21348, 2007). UV A radiation inactivates microorganisms by
damaging proteins and producing hydroxyl and oxygen radicals that can destroy cell
membranes and other cellular components (Sinha and Hader, 2002). This process
takes more time than the damage produced by UV-C, which directly effects the DNA
of microorganisms by producing cyclobutane thymine dimers, 6-4 photoproducts, and
spore photoproducts (if spores are present), inactivating them without intermediate
steps (Grossweiner and Smith, 1989).

Hamamoto, et al., 2007, demonstrated the ability of UVA-LEDs at 365 nm to
inactivate bacteria in water. They found that E. coli DH5a were reduced by >5 log at
a dose of 315 J/em” (Hamamoto et al., 2007). UVA is poorly absorbed by DNA, but
can damage proteins and produce hydroxyl and oxygen radicals that can destroy cell
membranes and other cellular components (Sinha and Hider, 2002). This process
takes more time than the damage produced by UVC, which directly effects the DNA
of microorganisms by producing cyclobutane thymine dimers, 6-4 photoproducts, and
spore photoproducts (if spores or dehydrated vegetative cells are present),
inactivating them without intermediate steps (Grossweiner and Smith, 1989).

Sandia National Laboratories documented inactivation of E. coli with UVC-

LEDs at 270 nm (Crawford et al., 2005). Two strains of E. coli, ATCC #23229 and
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#15596, shown to have a high and medium sensitivity to UV respectively, were
evaluated. Tests were conducted while the E. coli were in early log growth phase
and were centrifuged for one hour and suspended in phosphate buffer solution (PBS).
This process was repeated twice resulting in an initial E. coli concentration of 10° and
absorbance values of 0.0136 and 0.0234 for ATCC #15597 and #23229, respectively.
Results for E. coli #15596 show an increased inactivation efficiency compared to the
Environmental Protection Agency (EPA) inactivation data for 254 nm low-pressure
(LP) sources: 1.85 log reduction with a dose of 2.2 mJ/cm? for the LEDs, compared to
a 2 log reduction with a dose of 6 mJ/cm? utilizing a LP lamp (Crawford et al., 2005).
Results were inconclusive for E. coli #23229 due to inconsistencies in the data.
Sensor Electronics Technologies (SET) have demonstrated inactivation of E.
coli B (ATCC #11303) using 265-310 nm UV-LEDs (Gaska, 2007). SET reports that
inactivation was highly wavelength dependent with inactivation decreasing by more
than six orders of magnitude for the 310 nm LEDs compared to the 265 nm LEDs.
They also report that the killing efficiency of the UV-LEDs exceeded that of LP

lamps, but neither methods nor data were reported (Gaska, 2007).
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5. Materials and Methods

5.1 Test Configurations

5.1.1 Low-Pressure Testing

Testing of low-pressure (LP) lamps was performed using a UV collimated
beam apparatus consisting of three LP mercury lamps housed inside a wooden
enclosure with a circular aperture at the bottom for the light to exit and irradiate the
sample below. The inside of the wood box was painted black and a piece of cardboard
was used as a shutter to cover the aperture between exposures. The UV lamps were
turned on ten minutes prior to the irradiation of samples based on the measured

warm-up time.

5.1.2 Set-up for UV-LED Batch System

An array of three UV-LEDs was created using a circuit wire-wrapped, with 30
gauge wire, to an electronic Perfboard (a fiberglass board with holes every 1/10"
inch). A 150-ohm resistor was wired in series with each LED to create 6 volts across
each LED at 20 amps with a 9 volt input voltage from a power supply. These values
are within manufacturer specifications for voltage and current. Socket pins were wire-
wrapped to the Perfboard to hold the LEDs in place for easy removal and

replacement.

5.1.3 Set-up for UV-LED Flow-Through Prototype

A row of ten UV-LEDs was created using a circuit wire-wrapped, with 30

gauge wire, to an electronic Perfboard. A 150-ohm resistor was wired in series with

www.manaraa.com



14

each LED to create 6 volts across each LED at 20 amps with a 9 volt input voltage
from a power supply. The LEDs were placed over a %4” x 4” aluminum trough and

water was pumped through the trough below the LEDs.

5.2 Irradiance Measurement

5.2.1 Radiometer Measurement

Irradiance was measured with a radiometer (International Light IL1400A)
calibrated at 254 nm. The response curve in Figure 3 was used to convert the
radiometer reading to the output wavelength of the LEDs. For example, for 265 nm,

the reading was decreased by 17.3%.

SED(SEL)240/W Response Curve
1 D0E+0 —— /'g T - —~ o
/ \ Meter Min Input Max Input
9.00E01 IL1700 1.00E-09 5.00E-04 Wicm2
/ \ IL1400 5.00E-08 5.00E-04 Wicm2
8.00E-01 7 \
7 MEO / \

5.00E-01

- a N
4 0EO \

J00E01 \

200801

1 D0E-DY NG

0.00E400

120 20 210 20 0 240 250 0 ] 20 290 30 310 320 330
Wavelength

Figure 3. Microbial Response Curve for IL1400 Radiometer
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The irradiance over time (0, 1, 2, 5, 10, and 20 minutes) was measured to
determine the warm-up time of both the low-pressure (LP) lamps and the UV-
LEDs. Irradiance of an array of one 265 nm hemispherical lens UV-LEDs was
measured at five distances from the source, up to five cm, to estimate the effect of
distance on irradiance changes, specifically for modeling and estimating dose

predictions for the prototype unit.

5.2.2 Spectrometer Measurement

The absolute irradiance and spectral output of each LED was tested, using an
Ocean Optics spectrometer 1 mm from the source. The LEDs tested included four flat
top 265 nm lamps, one flat top 250 nm lamp, one flat top 280 nm lamp, and one

hemispherical lens 280 nm lamp.

5.2.3 Actinometry

Chemical actinometry was used to evaluate the irradiance values measured by
the radiometer for the LP lamps and LEDs. Actinometry uses a chemical with a
known UV decay to measure the UV dose. For this research, the potassium
iodide/iodate (KI/KIO;) actinometer was used based on the method found in Rahn et
al. 2003. The actinometer solution was made up of 0.6 M KI, 0.1 M KIO;, 0.01 M
Na;B407 in 100 mL of deionized water that was rapidly mixed on a stir plate until
completely dissolved. The absorbance of the solution was recorded for 300 nm and
352 nm. Samples of the solution were irradiated and the absorbance was recorded for
each irradiated sample at 352 nm. Irradiation times were based on an irradiated

sample absorbance at 352 nm of less than 1.4 since absorbance data becomes more
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unreliable above 1. Detailed calculations and instructions can be found in
Appendix A based on the method used by Bolton Photosciences Inc. The quantum
yield (®) used for the low pressure test (254 nm) was 0.73 (Rahn et al. 2003). For the
UV-LED batch system test (265 nm), a quantum yield of 0.57 was used based on a
linear relationship between wavelength and quantum yield between 254 nm (® =
0.73) and 284 nm (P = 0.3) (Rahn et al. 2003). Details can be found in Appendix A.
The LP system was tested at a lamp to detector/water surface distance, L, of
40.2 cm and the UV-LED batch system was tested at an L of 0.6 cm. The distance for
the UV-LED batch system needed to be much closer due to the low intensity of the

three LEDs compared to the lamps used in the LP system.

5.3 Microbial Testing

E. coli was used as an indicator organism to compare the efficiency of the LP
and UV-LED systems, and to evaluate the UV-LED prototype. The dose response
was evaluated for three E. coli strains at log growth phase and stationary phase
irradiated by LP lamps and UV-LEDs. Growth curves were developed to identity log
growth phase. Samples were irradiated using a low-pressure quasi-collimated beam
apparatus and a UV-LED batch system and log-inactivation information was

compared.

5.3.1 Bacteria Strains

The first E. coli strain used in these experiments was obtained from Kate
Kowalski, a previous graduate student at the University of Colorado. It is believed to

be E. coli K12, but it is not certain. Purity was verified by streak plating and visual
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observation on tryptic soy agar (TSA, Difco #236950). An antibiotic resistant E.
coli strain DH5a. [endA 1 hsdR17 supE44 thi-1 recAl gyrA relAl A(laclZYA-
argF)U169 ¢80 Alac-ZM15] was obtained from Kevin McCabe, a research associate
in the CEAE department. Details of the strain can be found in Chao et al., 2002. E.

coli K12 was obtained directly from ATCC (#29425).

5.3.2 Preparation of Inoculum

For testing in the stationary phase, colonies were obtained from TSA plates

after overnight incubation at 37°C using sterile methods and added to a 500 mL glass

bottle of sterile tryptic soy broth (TSB, Cellgro #61-412-R0O). This stock solution
was place in the 37°C incubator for 24 hours before testing allowing for the stationary
phase to be reached. The E. coli stock solution was kept for approximately two
weeks in the incubator and was purified every couple of months by streak plating the
stock solution and transferring colonies to fresh TSB.

For testing in the log growth phase, one colony (to assure genetic
homogeneity) was obtained from a TSA plate after overnight incubation at 37°C and
added to 10 mL of sterile TSB in a sterile 15 mL vial. The vial was rapidly vortexed
to break up the colony and then the 10 mL solution was added to 90 mL of TSB in a
sterile 250 mL glass bottle with a sterile magnetic stir bar. For the E. coli DH5a, 100
uL of 1000x concentration carbenicillin antibiotic was added to assure that the E. coli
DH5a strain was the only bacteria in the stock. The stock solution was incubated at

37°C on a stir-plate to assure constant mixing and oxygen levels throughout the stock.
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This solution was used to create the growth curve (section 3.3.2) and kept at 4°C
for less than 2 weeks to inoculate future stock solutions.

2 mL of unwashed E. coli was used to inoculate 198 mL of phosphate buffer
solution (PBS, pH 7.4), for a concentraion of approximately10® CFU E. coli per mL,
for initial testing. Due to the large absorbance values of the unwashed solution,
subsequent tests were conducted with 6 mL of washed E. coli in 194 mL of PBS. The
E. coli were washed in PBS by centrifuging 1 mL samples at 5000 rcf for 5 minutes,
pouring off the top liquid, adding 1 mL of PBS, vortexing to mix, and centrifuging

again. This process was repeated three times.

5.3.3 Determination of Growth Curves

A growth curve was determined for each E. coli strain based on the absorbance
at 600 nm (OD 600) and cultured colonies. After initial inoculation, the optical
density at 600 nm (OD600) was measured every thirty minutes. The OD600 was
measured in a 1 mL quartz cuvette and zero was established using sterile TSB
(Spectrophotomer HACH, DR 5000). The cuvette was rinsed three times with
distilled (DI) water and shaken dry between measurements. Samples were cultured at

two points along the curve to compare OD600 values to E. coli concentration.

5.3.4 UV Irradiation

E. coli spiked PBS was irradiated with LP and LED sources and the UV-LED

prototype was evaluated using E. coli K12 as a biodosimeter. All tests were
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completed within two hours and irradiated samples were covered to minimize

photoreactivation as much as possible.

5.3.4.1 Quasi Collimated Beam Testing

A quasi-collimated beam apparatus was used to expose 40 mL portions of E.
coli spike PBS at UV fluences ranging from 0 to 20 mJ/cm? (Figure 3). Well-mixed
sample was poured into a sterile 50 mL glass crystallization dish (2.2 cm diameter)
with a sterile magnetic stir bar. The glass dish and stir bar were disinfected under the
UV lamp for ten minutes between each test and the same procedure was followed
with a sample of sterile water to check for contamination. The sample was placed on a
stir plate under the lamps and irradiated for the calculated exposure time using the
manual shutter. After irradiation, the sample was poured into a vial and vortexed to
mix. Serial dilutions were made, vortexing each dilution for five seconds before making

the next dilution. Multiple water samples were tested at each UV fluence in order to

assess errors in the measurements.

5.3.4.2 UV-LED Batch System Testing

5-7 mL of E. coli spiked PBS was placed in a 10 mL beaker with a sterile
magnetic stir bar and exposed to UV doses between 0 and 20 mJ/cm” while constantly
stirred (Figure 4). The exposure times were determined based on E,,, to deliver the

desired UV dose.
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5.3.4.3 UV-LED Prototype

The UV-LED prototype was evaluated by flowing E. coli spiked PBS and E.
coli spiked natural water (collected from a local pond) through the system. Initial .
coli concentration was tested by running the sample through the prototype with the
LEDs turned off. Log reduction of E. coli was evaluated for multiple flow rates and
multiple UV absorbance values. The system was disinfected by flowing 500 mL of
0.6% sodium hypochlorite solution through the tubing and prototype followed by 500

mL of sterile DI water before all rounds of tests.

5.3.5 UV Dose Calculations

In order to provide the appropriate UV fluences, the lamp irradiance and the
exposure time necessary was determined prior to the irradiation of samples. Using the
sample absorbance, water depth, and measured distance from the UV source to the
water surface, the following equations were used to calculate the average sample

irradiance (Bolton and Linden, 2003):

'

E,, = E, * Petri Factor * Reflection Factor * Water Factor * Divergence Factor

a

1-10"*"
WaterFactor = ————
A*b* In(10)
where £ ’avg is the average sample irradiance, E, is the incident irradiance measured

with the UV radiometer, 4 is the sample absorbance and b is the sample depth. Using

E ’avg and the required UV fluences, the exposure time was calculated:

UV Fluence (mJ /cm?)
E (mW/cm®)

avg

Exposure Time (s) =
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The incident irradiance was measured before and after each set of tests with a
digital UV radiometer (IL1400A, International Light). The average irradiance was
estimated according to Bolton and Linden (Bolton and Linden, 2003). A petri factor of
0.98 and one were used for the LP and LED systems, respectively, and a reflection
factor for water of 0.975 was used. The water factor accounted for the UV absorbance
of the water through the sample water depth and the UV absorbance of the sample at
254 nm and 266 nm for the LP and LED systems, respectively (measured with a
spectrophotometer, HACH DR 5000).

The divergence factor accounted for the divergence of light from the source over
the lamp-to-sample distance. The divergence factor was not used for the samples
irradiated with the LEDs due to the narrow output (six degrees) of the LEDs used.
This assumption was tested by evaluating log inactivation for samples with 1 cm and
2 cm water depths to assure that the divergence factor had no effect on the LED
system.

Irradiation time was controlled by a manual shutter for LP tests and by turning
on/off the lamps for LED tests. The LP lamps and LEDs were allowed to warm-up
for 10 minutes before tests and the LEDs were turned off for a maximum of 10
seconds while tests were being set-up, which did not significantly affect the
irradiance. The LP system did not need to be turned off while tests were set up due to
the greater distance from the lamps to the sample allowing enough space for a manual

shutter to be used.
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5.3.6 Determination of E. coli Concentration

After irradiation, E. coli concentrations were tested using the vacuum
filtration method for the first half of testing and spot plating was used for the second
half. Comparisons between the two methods showed no significant difference in

results and spot plating allowed for testing to be conducted much faster.

5.3.6.1 Vacuum Filtration Method

The vacuum filtraton method was conducted according to standard method
#9222 (APHA, 1998). A glass vacuum filtration apparatus was used with a 1000 mL
sidearm Erlenmeyer flask. All glassware, pipette tips, agar, and broth were autoclaved
for twenty-five minutes and allowed to cool to room temperature before use. A 0.45
um sterile filter membrane (Whatman #09-529-712) was placed in the vacuum
apparatus and 10 mL of sterile 1x phosphate buffer solution (1x PBS, pH 7.4) and 1
mL of sample was added. The PBS was added first to assure even spreading of sample
across the filter. The vacuum was turned on until the liquid was removed from the
filter apparatus. Using flamed tweezers, the filter membrane was removed from the
vacuum apparatus and rolled onto MacConkey agar (Difco #212123) in a 60 x15 mm
Petri dish. This process was repeated in duplicate for each dilution (serial dilutions
were made with 1x PBS) of each sample rinsing the vacuum filter with 20 mL of
sterile DI water between each test. After every ten tests, 10 mL of sterile water was
run through the same procedure to check for contamination. The agar plates were then

inverted and incubated for 24 hours at 37°C.
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5.3.6.2 Spot Plating Method

The spot plating technique allows bacterial colonies to be quantified by
dropping a known volume of bacterial suspension onto the surface of a solid agar
media (Gaudy et al., 1962). This method is advantageous because four dilutions of
five replicates each can be read on one 100 mm diameter plate, which would require
twenty 60 mm diameter plates using the vacuum filtration method. There was also
less concern for contamination between sample plating.

The spot plating method involved dividing a 100 mm diameter TSA dish into
four quadrants by drawing lines with a black sharpie marker on the bottom of the
plate. Five 10 uL drops of each sample dilution were then placed in each quadrant
using a 2-20 uL pipettor. Once the spots had completely dried, the plates were placed
upside down in the 37°C incubator. The plates were incubated for 24 hours before the

colonies were counted.

5.4 Data Analysis

For the vacuum filtered samples, the E. coli colonies show up metallic red on the
MacConkey agar after incubation and these colonies were counted for each 60 mm
plate. Colony counts between 20 and 200 were recorded as CFU/mL. Standard
Methods states that colonies counts below twenty should be cautiously interpreted
and colony counts above 200 are no longer able to be counted due to growth overlap
(APHA, 1998). The number of bacterial colonies formed was recorded and log

inactivation was calculated as a function of UV dose (spreadsheet in Appendix B).
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For the spot plating method, individual spots of a low dilution appeared as
one large spot and spots of a high dilution had one, two, or no colonies appear.
Spots with 3 to 30 colonies were recorded (CFU/0.01 mL). If two dilutions had
results that fell into this range, the lower dilution (more colonies in each spot) was
chosen. The colonies were averaged for the five spots and converted to CFU/mL by

multiplying by the dilution factor (spreadsheet in Appendix B).

The log reduction (log No/N) was calculated for each test based on the initial
non-irradiated E. coli concentration, N,, (CFU/mL) and the concentration of E. coli
post-irradiation, N (CFU/mL). The duplicate tests (for vacuum filtration) and
quintuplicate tests (for spot plating) were averaged for a combined log reduction for
each sample irradiated. All of the tests conducted for a particular strain of E. coli
were combined by averaging the log reductions for each similar dose provided.

A paired t-test was performed on the low-pressure and LED E. coli K12
inactivation data to evaluate if there is a statistical difference in efficiency between
the two UV sources. The paired t-tests were based on a 95% confidence interval on
the difference between the means of the LP and LED inactivation at a given dose (2,
5, 10, 15, and 20 mJ/cm?).

Statistical regressions were performed for three models on the E. coli K12
data; logarithmic, second order polynomial, and the Mamane-Linden model (Mamane
and Linden, 2005). The Mamane-Linden model takes the shoulder, linear, and tailing
sections (frequently found in microbial dose-response curves) into consideration. To

model the tailing effect found in the data, the Mamane-Linden model was evaluated:
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1= (=107 4 g1 07
1+a

N
log(—
g(N)

o

The coefficients were determined from linear trendlines of the data from 0-10
mJ/cm2 (linear portion) and 10-20 mJ/cm?2 (tailing portion). The k1 and k2 values are
the slopes of the linear and tailing trendlines, respectively. The d value is the y-
intercept of the trendline for the linear portion and the a value is 10 taken to the

negative power of the y-intercept of the tailing portion. H, in the model is the dose in

mJ/cm®.
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6. Results and Discussion

6.1 Irradiance

6.1.1 Radiometer Measurements

Over the first 10 minutes after start-up, the irradiance of the UV-LEDs
decreases by about 7% and the irradiance of the LP lamps increases by about 20%,

after which time both sources level out (Figure 4).
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Figure 4. Warm-up time for UV-LEDs (W) versus Low

Pressure Lamps (A)
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The irradiance decreases with distance from the UV-LED source; rapidly at

small distances and slowly at larger distances from the source to the radiometer

detector. Up to five cm, the irradiance can be approximated with the equation in

Figure 5.
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Figure 5. Irradiance over distance for one 265 nm LED
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6.1.2 Spectrometer Measurements

Seven lamps from SET were tested with a spectrometer (Ocean Optics USB
2000+). All of the lamps appear to output light at a slightly higher wavelength than
rated, particularly the 250 nm lamp (Figure 6). Three of the four 265 nm lamps output
light at very similar irradiance at a wavelength of around 266 nm. The fourth 265 nm
lamp is about 25 microW/cm2 higher. This could be due to variations in
manufacturing or less usage time than the other three lamps. None of the lamps had

been run for more than one hour at this point.
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_ 160 1 A 265 Flat 4
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E 140 | [\ —~ 280 Flat
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® 60 ,
= y 3
= 40 v
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Wavelength (nm)

Figure 6. Irradiance of UV-LEDs of various output wavelengths
(1mm from source)
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The UV-LEDs from SET appear to have a broader bandwidth than the
narrow spike at 254 nm produced by low-pressure lamps (Figure 7). The full width
at half maximum (FWHM), measured acorss the spectra at 50% of the peak
irradiance, is 10.8 nm for the 265 nm LED, which is slightly lower than the
manufacturer specification of 12 nm. The broader emission spectra could have

implications for system designs, paricularly if very specific wavelengths are desired.
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Figure 7. Nominal irradiance of three LEDs compared to the narrow
spike of low-pressure lamps
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The actinometry results correlate well with the radiometer data for the low-

pressure system and the UV-LED batch system (Figure 8). The difference between

the radiometer reading and the average actinometry results were 0.6%, 3.1%, and

16% for the LP and two UV-LED batch system tests, respectively. The radiometer

readings were therefore used to determine the dose for all subsequent tests.
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Figure 8. Comparison of Radiometer and Actinometer for LP and LEDs
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6.3 Inactivation of E. coli

6.3.1 Microbiological Growth Curves

Based on the data in Figure 9, the OD600 can be used to roughly estimate the E.
coli concentration (CFU/mL) with the following equations for each strain of E. coli:

E. coli lab strain: (3.2 x 10%) x OD600

E. coli DH5a. strain: (1.8 x 10%) xOD600

E. coli K12 strain: (5 x 10%) xOD600
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Figure 9. Growth curves for E. coli (top to
bottom: lab strain, DH5a,, K12), OD600

readings (x) and cultured colonies (M)
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This information was used to determine the growth phase of the E. coli
during tests, which can have a significant effect on the UV sensitivity of the
microorganism. As shown by Morton and Haynes, E. coli in the late log phase can be
more sensitive to UV by 1-2 log compared to E. coli in the early log or stationary

phases (Morton and Haynes, 1969).
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6.3.2 Low-Pressure versus UV-LEDs

Log reduction of the lab strain appears to be slightly improved for the LED

source at low doses and approximately the same at higher doses, based on thirty and

eight data points in duplicate for the LED and LP sources respectively (Figure 10).

However, testing was stopped after 38 tests due to the lower than expected rate of

disinfection for E. coli. Actinometry was performed to check the radiometer used to

attain the irradiance value used in the dose calculations. The actinometry was within

reasonable error, particularly for the low-pressure lamp, and it was determined that

radiometer was not a source of error.
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Figure 10. Log reduction of E. coli (Iab strain) by irradiation from low-pressure
lamps (254 nm) and LEDs (265 nm). Error bars represent one standard deviation

of the mean
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Sommer et al. (2000) showed that different strains of E. coli can have
different sensitivities to UV irradiation (Figure 11). To evaluate the method, E. coli
DHS5a, a strain known to be sensitive to UV irradiation, was evaluated in the lab. Few
data points were taken due to the rapid kill that was difficult to measure, but the
results show that the method used in the lab appears to be within published values for

inactivation of E. coli (Figure 12).
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Figure 11. Comparison of inactivation rates of lab E. coli strain to DH5a and
multiple E. coli strains in the literature (Sommer et al.. 2000)
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Figure 12. Comparison of inactivation of the lab E. coli strain and
E. coli K12 in the literature (Oguma et al., 2002)

Due to the variance in UV sensitivity based on strain, the results were
compared to E. coli K12, since that is what the lab strain is thought to be. Inactivation
of E. coli K12 in the literature, showed that it is less sensitive to UV irradiation than
many other strains. However, inactivation of E. coli K12 performed by Oguma et al.
(2002) does not correspond to the inactivation of the lab E. coli strain performed in
the lab (Figure 12).

Irradiation tests were performed on E. coli at multiple growth phases based on
findings by Morton and Haynes (1969) that UV sensitivity varies for microorganisms
in different growth phases. The lab E. coli strain was evaluated at early log, late log,
and stationary phases, but no significant difference was found. This discrepancy
could be due to the lab E. coli strain not being E. coli K12 or the strain could have
mutated through years of use in multiple labs. A pure strain of E. coli K12 was
obtained from ATCC (#29425) and a new round of testing was conducted with the E.

coli K12 at log growth phase instead of stationary phase based on common
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methodology found in the literature. The E. coli K12 obtained from ATCC was no
more sensitive than the lab E. coli strain (Figure 13). The lower sensitivity seen in
the results could be due to photoreactivation or data analysis errors, but based on the
actinometry, the dose received should be accurate. The difference is small however,
and should not affect the goal of this research to compare the efficacy of using LP

lamps and UV-LEDs as the irradiation source for disinfecting E. coli in water.
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Figure 13. Inactivation of E. coli K12 by low-pressure lamps and UV-LEDs. Error
bars represent one standard deviation of quintuplicate tests.
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The data were modeled using the Mamane-Linden model, and logarithmic

and 2" order polynomial regressions (Mamane and Linden, 2005). The coefficients

for the Mamane-Linden model are found in Table 1.
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Figure 14. Linear trendlines used to determine coefficients for Mamane-Linden model

Table 1. Coefficients for Mamane-Linden Model

Source Equation Equation Coefficient Value
(linear portion) (tailing portion)

k1l 0.281
LP y=0.281x-0.403 | y=0.049x+2.020 | k2 0.049

d 0.403

a 0.0955

kl 0.287
LEDs |y=0.287x+0.024 | y=10.088x+ 1.607 | k2 0.088

d -0.024

a 0.0247
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The resulting Mamane-Linden model can be found in Figure . The three
models were evaluated for the E. coli K12 inactivation data for the LP and LED
sources (Figure 15, Figure 16, Figure 17). R-squared values were calculated and
compared for all three models to determine the best model for the data (Table 2). The
logarithmic and second order regressions performed slightly better than the Mamane-
Linden model for the raw and averaged E. coli K12 inactivation data. The logarithmic
regression was the best model for the LED data and the second order polynomial
regression was the best model for the LP data. The R-squared values were within 4%
of each other for the logarithmic and second order models. One model was chosen for
both data sets for ease of comparison. The logarithmic model was chosen over the
second order polynomial so that dose response predictions greater than twenty

mJ/cm? can be made.
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Figure 15. Mamane-Linden model for E. coli K12 inactivation data
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Figure 16. Logarithmic regression for E. coli K12 inactivation data
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Figure 17. Second order polynomial regression for E. coli K12 inactivation data
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Figure 18. Mamane-Linden model for grouped and averaged E. coli K12 data
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Table 2. Comparison of three models for E. coli K12 inactivation data
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Model Data Set Low-Pressure LEDs
P-value R’ P-value R’
Mamane-Linden 1.19x10° [ 0.907 |4.21x10° |0.813
Logarithmic Raw Data | 4.76x10” | 0.889 |5.12x107"" | 0.847
2" order polynomial 4.18x107 [0.924 |6.91x10" |0.808
Mamane-Linden 1.55x10° | 0.976 |9.26x10™* | 0.859
Logarithmic Averaged | 4.95x107 |0.949 | 1.77x10* | 0.918
2" order polynomial 1.35x10” | 0.986 |4.05x10” | 0.890

Based on results of paired t-tests, at a 95% confidence, the low-pressure and

LED sources are not statistically different for the inactivation of E. coli K12 (Table

3). Tests performed on individual doses, show statistically significant improvement at

doses of 2, 5, and 20 mJ/cmz, but not at doses of 10 and 15 mJ/cm? for a 95%

confidence.

Table 3. Paired t-test for the E. coli K12 inactivation data

Average
Removal
Dose Low
(mJ/cmz) Pressure LED | Difference

2 0.23 0.44 0.21 Average Difference | 0.275
5 0.90 1.66 0.76 Standard Deviation | 0.379
10 2.45 2.36 -0.09 to 1.623
15 2.87 2.80 -0.07 alpha 0.050
20 2.87 3.44 0.56 t959, 2.015

6.3.3 UV-LED Flow-Through Prototype

The ten-LED prototype was evaluated using biodosimetry with E. coli K12.

The linear trendlines for log reduction with varying UV absorbance (UVA) values all

have a similar slope (within one log reduction per one liter per hour) and the waters
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with lower UV A values are disinfected to the same level of waters with higher
UVA values at lower flow rates, as expected (Figure 21). The natural water (UVA
of 0.259) appears to have a similar response and is in the middle of the PBS samples

with UVA values of 0.129 and 0.342).

5
<+ Natural Water, UVA = 0.259
x PBS, UVA = 0.055
4.5 | = PBS, UVA = 0.129
' N PBS, UVA = 0.342
4 i
35 y = -3.00x + 5.36
' R? = 0.90
c
o 3
=
Q
3
T 25 y = -3.61x + 4.15
i R? = 0.80
o 2
|
1.5 y = -2.65x + 4.10 "
R? = 1.00
1] y = -3.47x + 5.15
R?=0.98
0.5
0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
Flow Rate (L/hr)

Figure 21. Dose response for multiple flow rates and UVA values of E. coli K12
spiked PBS and natural water

In order to compare the prototype to commercial system, the dose provided
for a given flow rate in mL/min and influent water UV transmittance (UVT) are
needed. The dose was calculated based on the logarithmic regression model (log
reduction = 1.25*Ln(Dose) — 0.3665) of the E. coli K12 inactivation dose response to
UV-LEDs (Figure 22). The UVA values were converted to UVT with the equation

UVT = 10"Y* Fora UVT of 88%, a dose of ten mJ/em? can be reached with a flow
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rate of fourteen mL/min. For a UVT of 74%, the flow rate required for a dose of

ten mJ/cm” (UVT = 74%) is 11.1 mL/min. This corresponds to a dose of forty
mJ/cm?, the NSF standard for UV disinfection systems, if forty LEDs are used with a
flow rate of 11.1 mL/min. Forty LEDs provide 14.4 mW of power, therefore 1.3 mW
are needed per mL/min flow rate. This number can be used to size larger systems to

compare UV-LEDs to LP systems.

20
18

Dose (mJ/cm?)
'—l
o

= PBS, UVT 88%

= PBS, UVT 74%
2 | PBS, UVT 46%

* Natural, UVT 55%
0

0 2 4 6 8 10 12 14 16 18 20
Flow Rate (mL/min)

Figure 22. Dose recieved for a given flow rate and UVT for E. coli K12 spiked
PBS and natural water
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6.4 Evaluation of Current and Future UV-LED Technology

LEDs that emit light in the germicidal wavelength range are a relatively new
technology and current values for cost, output power, and lifetime do not allow them
to be a viable option for the replacement of low-pressure lamps used for drinking
water disinfection, especially in developing communities. Based on a household
system that needs to provide twenty liters per person per day for a family of four
(eighty liters per day total), and a dose of forty mJ/cm® and 75% UVT (typical
specifications for current LP systems), a comparison was conducted of current UV-
LEDs with current LP systems such as the UV-Tube and the Sterilight systems. The
base case includes current UV-LED specifications and assumes a constantly running
system. The comparison shows the much greater cost of UV-LEDs, both upfront and
over time since the lifetime is much lower than the LP systems (Table 4). However,
SET and Crystal IS, manufacturers of UV-LEDs, estimate great improvements in the
next three to four years. If the projected values manufacturers are aiming for are met,
a UV-LED system will be a viable and improved option over current LP systems in
three to four years (Table 4). Upfront costs may be higher for larger systems, but
since warm-up time is not required for LEDs, the UV-LED systems can be run
intermittently, greatly increasing their lifetime and decreasing long-term costs due to

fewer lamp replacements (Table 4).
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Table 4. Comparison of current and projected future UV-LEDs with LP systems
based on cost, lifetime, and power output
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UV-LEDs

UV- Base 3-4 year projection

Tube | Sterilight Case |Constant| Intermittent
mW/Lamp (output) 15000 10000 0.36 100| 100 100
Lifetime (hrs) 9000 9000 1000 10000 | 10000 | 10000
Cost ($/mW) 0.0013 0.0055 664 0.1 0.1 0.1
Flow Rate (mL/min) 6000 1890 55.55 55.55| 500| 1000
Hours/day 24.0 24.0 2.7 1.3
Total Lifetime (days) 42 417| 3750 7500
Total Lifetime (years) 0.11 1.14 10 21
Total mW (output) 72.22 72.22| 650 1300
Number of LEDs 201 1 7 13
Upfront lamp cost 20 55 47,943 7 65 130
3 year cost 60 165] 1,260,063 21 65 130
20 year cost 389 1,071 ] 8,400,421 123 130 130

Increasing power output will be necessary for systems to utilize a reasonable

number of LEDs independent of lamp cost. Each LED requires wiring and other

electrical components such as resistors and heat sinking material. More lamps also

require a larger system and more materials that will cost more up front. Maintenance

will also be more difficult with a larger number of LEDs since each lamp will need to

be monitored to detect broken or burned out lamps. This will be particularly

important for systems that require a high flow rate, where thousands of LEDs may

become difficult to install and maintain. Crystal IS is hoping to have 100 mW (power

output) LEDs on the market by 2013. Improving the power output based on

manufacturer projections over the next three to four years, shows a large decrease in

the number of LEDs required (from over 200 to only one LED for a constantly

running household system that would treat eighty liters per day at forty mJ/cm® with a

UVT as low as 75% (Table 5).
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Table 5. Effect of improving output power on the number of LEDs required

Vary Power Output Base Case Casel Case2 Case3 Case4 CaseS
mW/lamp 0.36 2 5 10 50 100

Number of LEDs 201 37 15 8 2 1

One of the most desired features of LEDs for disinfection systems is their long
lifetime, particularly for developing communities, where replacements can be
difficult to come across. UV-LEDs in the germicidal wavelength range currently have
very low lifetimes of approximately 1,000 hours to 50% power. Manufacturer
projections for the next three to four years would offer lifetimes equal to that of LP
lamps (10,000 hours by around 2012) (Table 6). However, since they do not need to
warm-up, they can be run intermittently, increasing the total lifetime compared to LP

systems ten to twenty fold (Table 4).

Table 6. Effect of improving lifetime on the upfront and long-term cost

Vary Lifetime Base Case Casel Case2  Case3 Case 4 Case 5
Lifetime (hrs) 1000 2000 4000 6000 8000 10000
Total lifetime

(days) 42 83 167 250 333 417
Total lifetime

(years) 0.11 0.23 0.46 0.68 0.91 1.14
3 year cost 1,260,063 630,032 315,016 210,011 157,508 126,006

The most influential improvement to UV-LED disinfection feasibility is cost
decrease. Based on manufacturer’s three to four year projections, the cost will
decrease over 1,000 fold to $0.1 per mW in 2013. The 6,000 percent decrease in
three-year cost for a household system, brings the total cost to 190 dollars, which is
almost as cheap as the three year cost for the sterilight system lamps at 165 dollars

(Table 7, Table 4).
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Table 7. Effect of decreasing lamp cost per mW on the upfront and long-term cost

Vary Cost  Base Case Case 1 Case 2 Case 3 Case 4 Case 5
Cost ($/mW) 664 332 100 10 1 0.1
Upfront lamp
cost 47,943 23,975 7,222 722 72 7
3 year cost 1,260,063 630,136 189,800 18,980 1,898 190

Combining projected improvements to power output, lifetime, and cost per

mW, result in UV-LEDs being a feasible option and improvement over LP systems

around the year 2013 (Table 8). If the projections can be met this will result in a

household system that will treat eighty liters per day at 40 mJ/cm?” (if UVT of water

greater than or equal to 75%) for seven dollars of upfront lamp cost, compared to

twenty or fifty-five dollars for lamps for the UV-Tube and Sterilight systems,

respectively. The cost savings will increase yearly with slightly higher lifetime values

of 10,000 hours for the LEDs versus 9,000 hours for the LP lamps. This will result in

lower yearly replacement costs.

Table 8. Effect of improving all three parameters; power output, lifetime, and cost

Vary All Base Case Casel Case2 Case 3 Case4 Case5
mW/lamp 0.36 2 5 10 50 100
Lifetime (hrs) 1000 2000 4000 6000 8000 10000
Cost ($/mW) 664 332 100 10 1 0.1
Total Lifetime

(days) 42 83 167 250 333 417
Total Lifetime

(years) 0.11 0.23 0.46 0.68 0.91 1.14
Number of

LEDs 201 37 15 8 2 1
Total lamp cost

(upfront) 47,943 23,975 7,222 722 72 7
Cost for 3 years 1,260,063 315,068 47,450 3,163 237 19
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The long-term cost savings can be increased further and the maintenance

required to replace burned out lamps can be decreased, by increasing the system

flow rate and turning on the lamps intermittently as water is needed (Table 9, Table

4).

Table 9. Effect of increasing flow rate for future UV-LED systems

Vary Flow Rate  Constant Case F1 Case F2 Case F3 Case F4 Case F5
Flow Rate

(mL/min) 55.55 500 1000 1890 5000 6000
Hours/day 24.0 2.7 1.3 0.7 0.3 0.2
Total Lifetime

(days) 417 3750 7500 14175 37500 45000
Total Lifetime

(years) 1.14 10.27 20.55 38.84 102.74 123.29
Total mW 72.22 650 1300 2457 6500 7800
Number of

LEDs 1 7 13 25 65 78
Total lamp cost

(upfront) 7 65 130 245.7 650 780

www.manharaa.com



50

7. Conclusions

UV-LEDs are an effective technology to inactivate E. coli in water. A dose
of ten mJ/cm? produced around two to 2.5-log inactivation for E. coli K12. This value
is slightly lower than the E. coli K12 inactivation data in the literature, but the two
sources were able to be compared nonetheless. The UV-LEDs at 265 nm were not
found to be statistically different than low-pressure UV sources at all doses. At doses
two, five, and twenty there was a statistically significant improvement with 95%
confidence. At doses of ten and fifteen, the two sources were not statistically
different. Therefore, overall, we can not conclude that UV-LEDs are an improvement
over low-pressure sources.

A ten LED prototype served as a proof-of-concept, but currently UV-LEDs in
the germicidal wavelength range are much too expensive, low power and have short
lifetimes. According to manufacturer projections, however, UV-LEDs should be a

viable and economic option within four years.

7.1 Future Research Needs

More research is needed to develop a practical, implementation-ready, water
disinfection unit. Specifically, an optimized design specific to family or small
community sized systems is needed to make UV-LED disinfection practical. This
includes disinfection unit geometry and UV-LED lamp distribution. Testing
disinfection effectiveness for other pathogen types is also necessary before UV-LED

technology can be utilized for reliable treatment.
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The use of UV-LEDs allows for greater design flexibility and multiple
reactor geometries should be modeled to optimize a UV-LED system. Currently,

UV disinfection systems are modeled using a version of the point-source summation
method, including the line source integration (LSI) method (Blatchley, 1997) and the
multiple point source summation (MPSS) method (Bolton, 2000).

The point-source summation method simulates a lamp as a series of co-linear
point sources of radiation and estimates the intensity of the lamp at any point in the
reactor as the sum of the intensity contributions from each point source (Blatchley,
1997):

P,

L(Rz)= 2 47:,02 exp{—(oqtq + O'W(R — rq))%],
i=1 i

1

where I, = radiation intensity at wavelength A (mW cm?)
R = radial distance from lamp axis to receptor site (cm)
z = vertical distance (cm)
P, = lamp output power at wavelength A (W)
n = number of point sources
p; = distance from ith point source to receptor site (cm)
0q = absorbance coefficient for quartz sleeve (cm™)
tqy = quartz sleeve thickness (cm)
o = absorbance coefficient for water (cm™)

rq = quartz sleeve outside radius (cm)
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This equation assumes that the lamp radiates in all directions and is
submerged under water and protected by a quartz sleeve. For a system that utilizes
UV-LEDs, the assumption that the lamps radiate in all directions no longer holds
since LEDs are available in various angular outputs such as 6° and 120° for Sensor
Electronic Technology’s (SET) hemispherical and flat window lens UV-LEDs,
respectively. The varying output angles of UV-LEDs requires that 4np2 term be
adjusted and the assumption that all point sources will have effect on all points in the
reactor can no longer be made. The reactor can no longer be assumed to be cylindrical
either, since that may not be the optimal geometry for a system utilizing UV-LEDs.

LEDs can not be submerged in water due to the configurations of their
electrical connections, so the quartz terms (0, tq, Iq) in equation X, can be replaced
by air terms (0,, 1), and because UV light is almost completely transmitted through
air, the absorbance coefficient for air can be neglected (Blatchley, 1997).

Testing disinfection effectiveness for other pathogens is also necessary before
UV-LED technology can be utilized for reliable treatment. MS2 bacteriophage and
adenovirus may be good organisms to evaluate if there is an increase efficiency in
inactivation due to different wavelength UV-LEDs. These organisms are also less

sensitive to UV disinfection and data for a dose of forty mJ/cm’ will be possible.
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Appendix A: Actinometry

Experimental Protocol for UV Dose Measurements with KI Actinometry

Originally Prepared by Jim Bolton and Mihaela Stefan
Bolton Photosciences Inc.

1. KI/KIOs Actinometry

The KI/KIOj actinometer is very convenient and easy to use for low pressure
lamp emissions. The actinometer solution does not absorb above 310 nm and so can
be used safely in room light. The overall photochemical reaction is:

8" + I0s” + 3H,O + hv —— 3137 + 6 OH”

The actinometer solution consists of 0.6 M KI and 0.1 M KIO; ina 0.01 M Na;B40~
buffer solution. The photoproduct is triiodide ion (Is”) which exhibits a strong
absorption in UV range and can be accurately quantified at A =352 nm (molar
absorption coefficient ¢ = 27,636 M cm™ in a 0.6 M KI/0.1 M KIOj solution), where
the actinometer’s components do not interfere. The quantum yield of this actinometer
1s 0.60 at 254 nm.

For example, for 5.0 mL actinometer solution in a 10 mL beaker (cross-sectional
area 3.80 cm’), the absorbance at 352 nm (ina 1 cm x 1 cm quartz cuvette) before
irradiation is found to be 0.021 — call this 43s5;(blank). After irradiation for 3.0 min,
the absorbance at 352 nm is 0.526 — call this 43sy(sample). The following calculations
illustrate how the photon irradiance and the irradiance are calculated:

[I57] = [A43s2(sample) - A3s2(blank)]/27,636 = (0.526 — 0.021)/27,636
= 1.827x 10° M

moles I;™ = [I57] x (L) = 1.827 x 10”° x 0.005 = 9.137 x 10™ moles

einsteins (moles of photons) = moles ;™ / ® = 9.137 x 10 / 0.60
= 1.523 x 107 einsteins

photon irradiance (£,') = einsteins/(area x time)
= 1,523 x 107/ (3.80 cm® x 180 s) = 2,226 x 10" einstein s cm™

irradiance (E') = E,' x photon energy at 253.7 nm (Uas3.7)
The irradiance must be corrected for the 2.5% that is reflected from the water
surface, so the incident irradiance on the water surface is:
E'(corrected) = E'(uncorrected)/0.975
= (2.226 x 107" x 471,576)/0.975 J einstein™
= 1.077 x 10* W em™ = 0.1077 mW cm™
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A general formula for the irradiance is:
[ 435, (sample) — 435, (blank)]x V' (mL)

Area(cm2 ) x Exposure time(s)

E' =29.17 (mW cm™)

where the symbols are defined above.

The following procedure should be used for the actinometry test.

a. 100 mL of the KI/KIO; actinometry stock solution is prepared by weighing
out 9.96 g of KI, 2.14 g of KIO; and 0.381 g of sodium tetraborate
(NazB407-10H,0) (This generates a solution that is 0.60 M in KI, 0.10 M in
KIO; and 0.01 M in Na;B40O7-10H,0). Dissolve in about 60 mL of distilled
water and add to a 100 mL volumetric flask and make up to 100 mL with
distilled water. The solution should be made up fresh each time and should not
be used after standing for more than 4 h.

b. Using a caliper (if possible) measure the internal diameter of a 10 mL beaker
and hence calculate the cross-sectional area (Area).

c. Measure the absorbance of the actinometry stock solution in a 10 mm
pathlength quartz cell at 300 nm and 352 nm. These values should be
approximately 0.58 and 0.02, respectively. Call the latter value A3sy(blank).

d. Measure the irradiance at the center of the beam with the radiometer. The
irradiance should be approximately 0.1 — 0.3 mW/cm” — call this E(before).

e. Add 5.0 mL of the actinometry stock solution and the 3 mm x 12 mm Teflon-
coated stir bar to a 10 mL beaker, place the beaker in the center of the beam at
the same position as the radiometer detector head, and raise the platform so
that the top of the solution to be irradiated will be at the same level as the
reference marker on the radiometer detector head.

f. Irradiate for an exposure time of 2.5 min (this is for an irradiance of 0.1
mW/cm?; adjust this time according your irradiance level) and measure the
absorbance at 352 nm — call this A3sy(sample).

g. Repeat (f) for exposure times of 2 and 3 times the time exposed in f (e.g. 5.0
min and 7.5 min for the example given).

h. Replace the beaker with the radiometer detector; lower the platform to the
same level as in (d) and record the meter reading — call this E(after).

1. Calculate the irradiance using the above formula.
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